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Abstract

The GEOS-1 general circulation model has been used to

compute atmospheric torques on the oceans and solid Earth for the

period 1980-1995. The time series for the various torque

components have been analyzed by means of Fourier transform

techniques.

It was determined that the wind stress torque over land is

more powerful than the wind stress torque over water by 55%, 42%,

and 80% for the x, y, and z components respectively. This is mainly

the result of power in the high frequency range.

The pressure torques due to polar flattening, equatorial

ellipticity, marine geoid, and continental orography were computed.

The orographic or "mountain torque" components are more powerful

than their wind stress counterparts (land plus ocean) by 231% (x),

191% (y), and 77% (z). The marine pressure torques due to geoidal

undulations are much smaller than the orographic ones, as expected.

They are only 3% (x), 4% (y), and 5% (z) of the corresponding

mountain torques. The geoidal pressure torques are approximately

equal in magnitude to those produced by the equatorial ellipticity of

the Earth. The pressure torque due to polar flattening makes the

largest contributions to the atmospheric torque budget. It has no

zonal component, only equatorial ones. Most of the power of the

latter, between 68% and 69%, is found in modes with periods under

15 days. The single most powerful mode has a period of 361 days.

The gravitational torque ranks second in power only to the

polar flattening pressure torque. Unlike the former, it does produce a

zonal component, albeit much smaller (1%) than the equatorial ones.

The gravitational and pressure torques have opposite signs,

therefore, the gravitational torque nullifies 42% of the total pressure

torque. Zonally, however, the gravitational torque amounts to only

6% of the total pressure torque.

The power budget for the total atmospheric torque yields 7595

and 7120 Hadleys for the equatorial components and 966 Hadleys

for the zonal. The x-component exhibits a large mean value (1811 H),

mainly the result of polar flattening pressure torque acting on the

ocean surfaces. Atmospheric torque modes with periods of 408, 440,

and 476 days appear in the spectrum of the equatorial components.



1. Introduction.

Atmospheric torques on the body of the Earth are produced by

forces arising from three distinct physical processes : tangential

stresses (surface friction), normal stresses (pressure), and body

forces (gravitation).

The wind stress torques are produced by the momentum

transfer due to the motion of the air over land and ocean surfaces.

The normal stresses require two conditions to produce a torque :

topographic features and a pressure distribution producing a non-

vanishing (and non-radial) resultant. The main topographic feature

on the Earth is its ellipticity of figure, or flattening. Higher degree

components are embodied by local features such as mountain ranges

on the continents, and by the geoidal undulations over the oceans.

The gravitational torques arise from the non-radial part of the

Earth's gravitational field.

The nature of the transmission of oceanic atmospheric torques

to the solid Earth is represented by a transfer function, i.e., an ocean

model. Possible modes include the following :

• Inverted Barometer : there is no transmission of water surface

forces to the mantle.

• Dynamic Response : transmission occurs through the dynamics of an

ocean model.

• Non-inverted Barometer : transmission occurs instantaneously.

Analysis by Wahr (1982) indicate that for forcing periods

longer than 10 days the ocean should respond in the inverted

barometer mode. More recently, Ponte (1993) concluded that sea

level response is strongly dependent on frequency and location, with

the largest departures from inverted barometer behavior occurring

at short periods and near boundaries. However, he reports significant

nonisostatic variability at periods as long as 11-15 days, due to

dynamic excitation of large scale normal modes.

Dehant et al. (1996) evaluated effects of the S1 solar

barometric tide, they considered both extreme cases of inverted

barometer and non-inverted barometer responses, as well as various

topographic features (ellipsoid, geoid, continental topography, ocean

floor bathymetry).

Segschneider and Sundermann (1997) observe two effects

which contribute to the ocean pressure torque :



• Sea level : higher at the western boundaries, due to the steady

westward blowing trade winds.

• Density : depth of the thermocline decreases from west to east.

They determine that sea level and density stratification are

almost in isostatic balance within a time step of 1 month. The net

torque is 2 orders of magnitude smaller than the effect of sea level

alone, with sea level effects slightly dominant. Furthermore, they

determine that wind friction torque input to the ocean is equal to net

pressure torque from the ocean to the solid Earth, However, if the

time step is less than the speed of barotropic modes, the response

could be dynamic.

In order to compute the wind stress torque over the oceans, it

is customary to express the relationship between the stress, F, and

the velocity, U(10), measured at a single height (10 meters) above

the mean surface by the expression :

F = CDN(10) P I U(10) I U(10)

CDN is the neutral drag coefficient, p is the air density.

Let U(IO)= I U(lO) I

CDN(10) as a function of U(10) over the sea has been given in the

literature by a number of investigators, including Wu (1969, 1980),

Garratt (1977), Large and Pond (1981), Amorocho and DeVries

(1980).

The neutral drag coefficient corresponds to the height at which

the magnitudes of mechanical and thermal production of turbulence

are equal, also referred to as the Monin-Obukhov length (L). It is the

height above the ground where buoyant forces become comparable

to the mechanical or sheer related forces in generating turbulence. At

a given height "z" conditions can be unstable, neutral, or stable :

unstable: (z/L) < 0

neutral: (z/L) = 0

stable: (z/L) > 0
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The Monin-Obukhov length is a function of a number of variables,

including thermodynamic parameters such as the sensible heat flux at the

surface, the absolute temperature and the specific heat at constant

pressure.

The modification of the neutral drag coefficient to account for

non-neutral conditions is done by means of Similarity functions of

the ratio (z/L), the specific functional form depends on the value of

this ratio. Bunker (1976) provides a table of modified drag

coefficient values as a function of wind speed and "air minus sea

temperature class".

Swinbank (1985) computed orographic and stress torques for a

period of 4 months during 1978-1979, using the United Kingdom

Meteorological Office general circulation model. His results indicate

mountain torque as the main contributor to short-term variability in

global atmospheric angular momentum.

Boer (1990) used data from a 20-year climate simulation using

the Canadian Climate Centre general circulation model with 5.625 °

space resolution and 18 hour time sampling. He found that on time

scales of days the orographic and stress torques contribute to the

rate of change of angular momentum in the ratio 60-40%. In time

scales of days to months the sum of orographic pressure torque and

land stress contribute 85-90% to the variation of angular momentum.

Rosen (1993) offers an informative discussion of the literature

on the torque problem.

Bryan (1997) made use of wind stress fields from the ECMWF

and the Hellerman-Rosenstein global atmospheric models, the

globally integrated wind stress ocean torques for the two models

show a difference in sign.

The determination of the wind stress over land is more

complicated. Some of the early formulations are in terms of the

geostrophic velocity and a geostrophic drag coefficient, i.e., Cressman

(1960), LaValle and Girolamo (1975), and Garratt (1977). More

recently, Wahr and Oort (1984) assumed that the greater viscous

coupling over land acts to decrease the surface wind speeds in such a

way that the zonal stress over land and ocean remains the same.

They recognize this assumption to be invalid in latitudes between 0 °

and 30 ° North where the local surface winds associated with the

monsoon are eastward, concentrated mainly over land, while the

zonally averaged winds over the ocean are westward.



The purpose of this investigation is to compute and analyze the

various atmospheric torques associated with the global stress and

pressure fields provided by the Goddard Earth Observing System

(GEOS) General Circulation Model.

2. The Goddard Earth Observing System General Circulation

Model, Version 1, (GEOS-1).

The GEOS-1 model was produced by the Data Assimilation

Office at NASA's Goddard Space Flight Center. It has a global

resolution of 2 ° latitude by 2.5 ° longitude, with data points every 3

hours, it covers the period 1980-1995.

The stress fields incorporate space and time dependent

variations for water, sea ice, permanent ice, and land surfaces.

Monthly varying climatological roughness lengths are specified for

each land surface vegetation type.

Surface stress calculations incorporate the Monin-Obukhov

stability theory and corresponding similarity functions. Surface

geopotential heights are obtained by averaging of the Navy 10' by

10' dataset supplied by the National Center for Atmospheric Research

(NCAR).

The model incorporates data from a variety of sources :

• Conventional Sources : rawinsondes, dropwindsondes, rocketsondes,

ships, buoys, surface stations, and aircraft.

• Satellite Sources : cloud track winds derived from geostationary

imagery, i.e., the GOES satellite. Thickness retrievals from the TIROS

operational vertical sounder flying on operational polar-orbiting

satellites.

• Lower boundary conditions :

(i) Sea surface temperature from values provided by the Climate

Prediction Center at the National Centers for Environmental

Prediction (NCEP) and the Center for Ocean, Land and Atmosphere

(COLA). These consist of blended satellite and in situ observations.

(ii) Soil moisture from observed monthly mean surface air

temperature and precipitation.

More detailed information is given by Schubert et al. (1997),

and by Takacs et al. (1994).
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3. Wind Stress Torques.

The torques produced by the various forces are computed by

forming the appropriate vector products. The resulting equations for

the wind stress torques are given below.

Let,

i, j, k : unit vectors in the (x, y, z) geographic coordinate system.

r : radius vector.

r=lrl

0 : colatitude.

: longitude.

u r , u 0 , uz : unit vectors in the (r, O, _.) geographic coordinate system.

F:wind stress vector.

F = F r u r + F 0 u 0 + F_,u L

per unit area :

rxF=(-Forsin_..-F_.rcose cos_,)i

+(Forcos_.-F_rcosesin_,)J

+ F_ r sin e k



The geographic global distribution of wind stress torque at a

specific time is displayed in Fig. 3.1. The time series corresponding to

the wind stress torque have been analyzed by means of Fourier

Transform methods. The percentages of total power for periods

under 15 days for the (x, y, z) components are (74%, 72%, 72.7%) for

the ocean, and (85.7%, 86.5%, 87.9%) for land. The land torque

subdaily variability exceeds that of the ocean torque in ratios of 3.47,

3.42, and 4.25 for x, y, and z-components, many daily and half-daily

modes appear prominently in the land torque spectrum. The ocean

torque equatorial components exhibit larger seasonal variability than

the land counterparts. The annual variability is most pronounced in

the ocean zonal component, due to one single mode with period of

361.2 days. The ocean torque has more power than the land torque

for all three components in the interannual range.

6



4. Pressure Torques.

The equations used for the computation of the pressure torque
are the following,

Let,

Ps : atmospheric pressure.

n :unit vector, local outward normal to topographic surface.

H : topography.

per unit area :

r × ( -p, n ) = -Ps { [(0H/0k) cot 0 cos _. + (3H/30) sin _,] i

+ [(_H/0k) cot 0 sin _, - (0H/D0) cos _,)] j

- (0H/O ) k }

In the developments that follow, the pressure torque is

analyzed according to the particular topographic features

represented by "H". The continental topography over land and the

geoidal undulations over the ocean are treated separately, as well as

the polar flattening and the equatorial ellipticity of the Earth.

The partial derivatives of the marine geoidal undulations and

the continental topography have been computed by means of

central-difference approximations. Formulations involving three,

five, seven, and nine points were tested. No significant variations

were found in the results. The three point method was adopted for
the long range computations.
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4.1. Marine Geoid Pressure Torque.

The geoidal undulations used to compute the pressure torque

over the oceans are those associated with the EGM96 gravity field

model. They are accurate to better than one meter in most areas.

More details about the EGM96 gravity field are given in section 5.

The geographic global distribution of marine geoid pressure

torque at a specific time is displayed in Fig. 4.1.1. Fourier spectral

analysis indicates zonal component power in the subdaily range is

greater than the equatorial, the three top contributing modes have

daily and half-daily periods. The equatorial components show

greater annual variability, produced by a single mode with period of

357.5 days.

4.2. Orographic Torque.

The calculation of the pressure torque over the continents

requires the representation of the orographic features. The GEOS-1

atmospheric model supplies its own topography. It is derived from an

averaging of a Navy 10 minute by ten minute dataset supplied by the

National Center for Atmospheric Research (NCAR). The averaged

topography was passed through a Lanczos filter in both dimensions to

remove the smallest scales (Takacs, Molods, and Wang, 1994).

The geographic global distribution of orographic pressure

torque at a specific time is displayed in Fig. 4.2.1. Notable features of

the Fourier analysis include greater relative concentration of power

in the subdaily range for the zonal component, led by a half-daily

mode. All three components show most of the power in modes with

periods under 15 days, i.e., 80.2% (x), 80.6% (y), and 85% (z). Seasonal

variability is approximately four times greater in equatorial

components than in the zonal. Curiously, the x-component annual

variability is much larger than the y-component counterpart, due to

the mode with period of 357.5 days. Geographically, the x-component

shows greater variability in the Andes and Himalayas, at least for the

particular epoch shown in Fig. 4.2.1. Modes with multiannual periods

are prominent in the spectrum for the equatorial components.
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4.3. Pressure Torque due to Polar Flattening.

Polar flattening constitutes the largest topographic feature on

the surface of the Earth. The ellipticity of figure can be expressed as

a function of the colatitude and the flattening parameter "f" by well

known relations. Let,

a = 6,378,388 m, (equatorial radius of ellipsoid of.revolution).

f = 1/297, (polar flattening).

H e • polar ellipticity of figure.

H e = -a [ f (cos 0 )2 + (3/2) f2 (cos 0 )2 _ (3/2) t-2 (cos 0 )4 ] + O(f3)

It can be shown that,

3He�30 = a [ f sin20 - (3/4) f2 sin40 ]

The atmospheric pressure torque per unit area is then,

r x ( -Ps n ) = -Ps [ (3H J30) sin X I - (3H J30) cos X j ]

Note that there is no zonal component due to polar flattening.

The global geographic distribution of pressure torque due to polar

flattening at a specific time is presented in Fig. 4.3.1.

The pressure torques due to polar flattening are the largest in

the atmospheric torque budget, it is pertinent to consider the

contributions due to ocean surfaces in the context of the oceanic

transfer function to the solid Earth. Assuming isostatic oceanic

adjustment for forcing modes with periods greater than 15 days, the

atmospheric torque transmitted to the solid Earth is then the sum of

the direct torque on the land masses, and part of the ocean torque.

The power in modes with periods longer than 15 days is between 31

and 32 percent of the total polar flattening pressure torque, for each

of the equatorial components. The single most powerful mode has a

period of 361.2 days, both for ocean and land contributions. Daily

and semidaily modes appear as second and third in rank for the y-

component due to land.
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4.4. Pressure Torque due to Equatorial Ellipticity.

The Earth's figure can be approximated by a triaxial ellipsoid,

i.e., an equatorial cross section is not perfectly circular, but elliptical.

The equatorial ellipticity is much smaller than the polar, but it

creates a topographic feature which produces a pressure torque.

The expression for the equatorial ellipticity is similar to that

for the polar flattening. Let,

_=_-+_0

_, :longitude.

_0 : Greenwich longitude of major axis of equatorial ellipse.

h : equatorial flattening.

E e : equatorial ellipticity of figure.

E e= -a [ h (sin [3 )2 + (3/2) h z (sin 13 )z _ (3/2) h z (sin [3 )4 ] + O(h 3)

It can be shown that,

_Ee/_ = - a [ h sin2( _. + _0 )- (3/4) h 2 sin4( _ + _0 ) ]

The atmospheric pressure torque per unit area is then,

r × ( -Ps n ) = -ps [ (_Ee/_) cot 0 cos _ I + (_E_/_) cot 0 sin _ j

- (_E_/_) k ]

Note that equatorial ellipticity produces equatorial and zonal

components of torque. The values adopted here for the equatorial

flattening "h" and the orientation of the major axis "_.0" are those

associated with the GEM-T2 geopotential model, as given by Bursa

and Pec (1993), i.e.,

_0 = - 14.94°

h = 1/91470
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The global geographic distribution of pressure torque due to

equatorial ellipticity at a specific time is presented in Fig. 4.4.1. The

Fourier analysis shows most of the power in modes with periods

under 15 days. The single most powerful mode, however, is in the

annual range, with a period of 361.2 days. The zonal component

exhibits greater variance in the subdaily range, with daily and

semidaily modes prominent for both ocean and land contributions.
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5. Gravitational Torque.

Dehant et al. (1996) show that the gravitational torque

produced by the atmosphere on the solid Earth can be approximated

by the following expression,

Fg=-.[s Ps(rxngr._ v) dS

where,

ngra v : unit vector normal to the equipotential surface, directed
toward the center of the Earth.

S : surface of the Earth

It is assumed that the surface pressure is only a function of the

weights of the air columns, and that the vectors r and ngra v do not

vary throughout the height of the atmosphere.

The gravitational field used in the computations is EGM96, the

Earth Gravitational Model 1996 (EGM96) was developed in

collaboration by the NASA Goddard Space Flight Center (GSFC), the

National Imagery and Mapping Agency (NIMA), and The Ohio State

University (OSU). It is a spherical harmonic model of the Earth's

gravitational potential to degree 360. It incorporates surface gravity

data, altimeter-derived gravity anomalies, extensive satellite

tracking data, and direct altimeter ranges. For a detailed description

of the model see Lemoine et al., 1998.

Note that thedirection of ngra _ is opposite to that of n in section

4, i.e., the gravitational torque acts in opposition to the pressure

torque.

Most of the gravitational torque power is associated with the

equatorial components. All three components have over 68% of the

variance in the high frequency range. The zonal component has

greater relative power concentration in the subdaily range (daily and

half-daily modes). The equatorial components most powerful modes

have periods of 357.5 and 381.3 days.
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6. Total Torque.

The total atmospheric torque on the oceans and solid Earth is

obtained from the sum of the individual components : wind stress

torque, pressure torque, and gravitational torque. The resulting time

series are displayed in Fig. 6.1. Power spectra are shown in Fig. 6.2.

The results of the Fourier analysis are presented in Table 6.1.

The results for the total torque show equatorial components

which are seven times as powerful as the zonal. Most of the power

occurs at the high frequency end of the spectrum, modes with

periods less than 15 days account for 67%, 67.5%, and 83.9% of the

power in the x, y, and z components respectively. The single most

powerful modes, however, are close to annual, with periods of 357.5

and 381.3 days. The zonal component has greater concentration of

power in the subdaily range, with one semidaily mode in fourth
rank.

Each of the various torques has a mean value and a time

varying part, the analysis has dealt only with the latter. Table 6.2

presents the mean values for the torques, as well as the algebraic

sum total.

The total torque acting on the atmosphere is equal in

magnitude and of opposite sign to that acting on the ocean and solid

Earth. Furthermore, this torque is related to the time rate of change

of atmospheric angular momentum (h x, hy, hz) by the well known

relations,

Fx = dhx/dt - f_z hy

Fy = dhy/dt + _2z h x

F z = dhz/dt

It is possible to perform the angular momentum calculations

for the atmosphere to compare with the torque values. However, it

would be only an internal test of the model. The gravitational field

model used to compute the gravitational and marine geoid torques

was not used in the development of the atmospheric model, this will

undoubtedly lead to discrepancies. However, it is of interest to check

on the large mean value obtained for the x-torque component. The

mean value for the term dhx/dt is small and can be neglected. The
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term _2Zhy has been computed and is shown in Fig. 6.3, where the
two time series correspond to matter terms computed with and
without the inverted barometer effect, as done by Chao and Au
(1991). The mean values obtained are 1950.39 H for the case without

IB effects, and 1807.64 H for the IB case. No special significance is

attributed to the closeness of the second value to the one using the

torque approach, it is probably coincidental. However, these results

indicate the possible existence of a large mean value for the x-

component of the torque. What could be the physical source?

According to M. J. Bell (1994), an important contributor is the

Siberian high pressure system, which is not balanced and which

produces a torque on the Earth's bulge. The values shown in Table

6.2, however, indicate that the main contribution is due to polar

flattening pressure torque over water.

The existence of atmospheric torque modes with periodicities

near that of the Chandler wobble is worth noticing. The x-component

of total torque exhibits two modes in third and fourth rank, with

periodicities of 408.6 and 476.7 days, each with power in excess of

28 H. In addition, there is a mode with period of 440.0 days and

13.31 H power, ranked 20th. These three modes also appear in the

spectrum for the y-component: 408.6 days (16.58 H), 476.7 days

(9.89 H), and 440.0 days (3.54 H). Examination of the various spectra

finds these modes only in torques associated with the pressure field:

the orographic, marine geoid, and gravitational. However, they are

not found in the spectra of polar flattening or equatorial ellipticity

pressure torques. A possible explanation: they result from the

interaction of the pressure field with spatial wavelengths of higher

degree than are found in the triaxility of the Earth's figure. The

strongest contributions come from the gravitational torque: the

spectrum for the x-component shows the 476-day mode (27.8 H), the

408-day mode (27.6 H), and the 440-day (11.3 H), the y-component

exhibits the 408-day mode (16 H).
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7. Summary.

The GEOS-1 general circulation model has been used to
compute atmospheric torques on the oceans and solid Earth for the
period 1980-1995. The time series for the various torque
components have been analyzed by means of Fourier transform

methods.

It was determined that the wind stress torque over land is

more powerful than the wind stress torque over water by 55.1%,

41.5%, and 79.9% for the x, y, and z components respectively. This is

mainly the result of power in the high frequency range. The ocean

wind stress torque equatorial components, however, have greater

variance in the seasonal range. Marine wind friction torques are

more important also in the interannual range. Annually, the ocean is

the main contributor to zonal variability, driven by one single mode

with period of 361.2 days. Adding the marine and land contributions

yields the total torque due to wind stress. The total equatorial

components exceed the zonal total by 22.4%.

The pressure torques due to polar flattening, equatorial

ellipticity, marine geoid, and continental orography were computed.

The orographic or "mountain torque" components are more

powerful than their wind stress counterparts (land plus ocean) by

231% (x), 191% (y), and 77% (z). The main contributors to this

difference are found in modes with periods in the 1-15 days range.

The wind stress (9.46 Hadleys) contributes more to the annual

variability of the zonal component than the mountain torque (3.07

Hadleys). The contributions to the seasonal zonal variability are

about equal, 3.02 Hadleys for wind stresses and 3.91 Hadleys for the

mountain torque. The zonal contributions with periods over 370 days

yield 8.47 Hadleys due to wind stresses and 7.67 Hadleys in the

mountain torque budget. The orographic equatorial contributions are

more powerful than those due to wind stress throughout the entire

spectrum.

The marine pressure torques due to geoidal undulations are

much smaller than the orographic ones, as expected. They are only

2.77% (x), 3.56% (y), and 5.24% (z) of the corresponding mountain

torques. The geoidal pressure torques are approximately equal in

magnitude to those produced by the equatorial ellipticity of the

Earth. Their power distributions as a function of period length are

also similar. There is a difference in the annual contributions to the
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zonal component, that of the equatorial ellipticity is 4.5 times larger,
mainly the result of a mode with a period of 361.2 days. Marine
geoid pressure torques contribute the single largest zonal mean
value.

The pressure torque due to polar flattening makes the largest
contributions to the atmospheric torque budget. It has no zonal
component, only equatorial ones. Most of the power of the latter,
between 68% and 69%, is found in modes with periods under 15
days. The single most powerful mode has a period of 361.2 days.

The gravitational torque ranks second in power only to the
polar flattening pressure torque. Unlike the former, it does produce a
zonal component, albeit much smaller (0.86%, 0.88%) than the
equatorial ones. The gravitational and pressure torques have
opposite signs, therefore, the gravitational torque nullifies 42.34%
(x), and 42.67% (y), of the total pressure torque. Zonally, however,
the gravitational torque amounts to only 6.28% of the total pressure
torque. The gravitational torque also nullifies 47.32% of the mean
polar flattening x-torque component.

The power budget for the total atmospheric torque yields 7595
and 7120 Hadleys for the equatorial components and 966 Hadleys
for the zonal. The x-component exhibits a large mean value (1811 H),
mainly the result of polar flattening pressure torque acting on the
ocean surfaces. Atmospheric torque modes with periods of 408, 440,

and 476 days appear in the spectrum of the equatorial components.

Finally, a word of caution concerning the values presented for

the various torques. The numerical calculations involve uncertain

quantities and subtraction of large numbers. The associated error

bounds could be large.
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Tables

X Y Z

Wind Stress

Water 231.860 244.179 172.398

Land 359.660 345.605 310.187

Pressure

Polar Flattening 14387.6 14144.1

Equatorial Ellipticity 61.0054 58.8186 54.0057
Marine Geoid 54.3629 61.2244 44.9128

Orography 1959.07 1719.57 855.970
Gravitational 6970.18 6820.76 60.0249

Total 7595.44 7120.57 966.460

Table 6.1. Total power (Hadleys) for various torque components.

Wind Stress

Water

Land

Pressure

Polar Flattening

Land

Water

Land and Water

X Y Z

-7.91 8.36 0.55

-1.52 -1.57 3.18

-31094.0 24634.5

34915.7 -24635.1

3821.89 -0.44

Equatorial Ellipticity 27.51 - 1.08 4.91

Marine Geoid -222.67 9.51 54.69

Orography -1.43 -3.93 -7.32

Gravitational -1808.59 -42.13 -8.33

Total 1811.34 -33.95 47.83

Table 6.2. Mean values (Hadleys) for various torque components.
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Figure Captions.

Figure 3.1. Geographic distribution of wind stress torque

(Hadleys/1000). Epoch: April 1, 1980. a) x-component, b) y-

component, c) z-component.

Figure 4.1.1. Geographic distribution of marine geoid pressure torque

(Hadleys). Epoch: April 1, 1980. a) x-component, b) y-component, c)

z-component.

Figure 4.2.1. Geographic distribution of orographic pressure torque

(Hadleys). Epoch: April 1, 1980. a) x-component, b) y-component, c)

z-component.

Figure 4.3.1. Geographic distribution of polar flattening pressure

torque (Hadleys). Epoch: April 1, I980. a) x-component, b) y-

component.

Figure 4.4.1. Geographic distribution of equatorial ellipticity pressure

torque (Hadleys/100). Epoch: April 1, 1980. a) x-component, b) y-

component, c) z-component.

Figure 6.1. Total torque (Hadleys). a) x-component, b) y-component.
c) z-component.

Figure 6.2. Total torque power spectrum (Amplitude in Hadleys). a)

x-component, b) y-component, c) z-component.

Figure 6.3. The term ( _2z hy ), x-component, time rate of change of

atmospheric angular momentum, a) with inverted barometer effects.

b) without inverted barometer effects.
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